Heterogeneous Graph Neural Networks : 임성수 교수님

 

Seminars

학교에서는 종종 AI 세미나가 열리고, 그 중에는 AI 대학원 에서 진행하는 세미나 수업으로 인해 열리는 경우가 대부분이다.
그냥 흘려 보내기에는 아까우니까 정리를 하면 좋겠다는 생각이 들었다.

Seminar Info

  • Speaker : 충남대 CSE 임성수 교수님.
  • Topic : Heterogeneous Graph Neural Networks

Memos

  • graph? vertex-edge relation. eg) drug-disease
  • ML with graph?
    • learn from graph data to sovle tasks!
    • example : node classification, link prediction, …
  • node classfication:
    • given partial node labels, predict missing nodes!
  • link prediction:
    • given partial links, predict missing links!
  • anomaly detection:
    • latent community/anomaly structure.
  • graph classification/regression?
    • relatively new topic.
    • make independent predictions specific to each graph.
    • training : subset of graph
    • target : entire graph, eg: set of molecular graphs.
  • representation learning on graphs?
    • find representation to encode/decode graphs into some embedding
  • embedding goal: preserving graph structure/properties
  • Enc-Dec framework : minimize $L(\text{Dec}(\text{Enc}(X)))$
    • Node2Vec(KDD16), random walk based similarity
  • naive way : concat adj mat + feature mat.
    • why? parameter size $O V $, sensitive to node orders.
  • solution : neural message passing:
    • for each iteration, update each node embedding using neighborhood nods $N(u)$
    • $h^{k+1} = update(h^k, aggregate(h^k_v, N(u)) \text{ when } v \in N(u))$
    • iterative algorithm
    • local feature-aggregation in GNN $\approx$ covolutional operation in CNN
    • aggregate from adjacent nodes $\approx$ receptive field
  • Check CS224W Stanford. CS224W Link
  • parameter sharing:
    • same aggregation parameters are shared for all nodes!
  • neighborhood normalization:
    • basic aggregation is sensitive to node degrees
  • GCNC(ICLR17):
    • symmetric-normalized aggregation
    • using a self-loop update approach
  • GraphSage(NIPS 17):
    • node sampling : fixed # of $N(u)$
    • inductive capability == parameter sharing
  • GAT(ICLR18) : multi-head attention.
  • Taxonomy of GNNs (TIST22) : review paper.
  • knowledge graph : subject, action, object eg) A rent B
  • Heterogeneous? Nodes also have types. eg) Person A rent movie B
    • node type mapping func $\phi : V \rightarrow A$
    • link type mapping func $\psi : V \rightarrow R $
    • $ A + R > 2$ : heterogeneous.
  • metapath : sequence of node types and link types.
    • eg, given ‘person a rents movie b’
    • metapath : $a \rightarrow b \rightarrow a$
    • able to augment graph!
  • MAGNN(WWW20), GTNC(NIPS19): make ‘useful’ metapath.
  • Prof’s way : treat metapath instance as a node:
    • relation between metapath : link
    • merge metapath-nodes when more thatn 2 common nodes

Questions

  • acyclic / cyclic 상관 없음?
    • practically works well, theoretically open problem

Conclusion

  • GNN 관심 있던 차 적절했던 세미나.

wbjeon2k

Pursuite for Progress.

This work is licensed under a Attribution-NonCommercial 4.0 International license. Attribution-NonCommercial 4.0 International